

Chimie des Éléments s et p

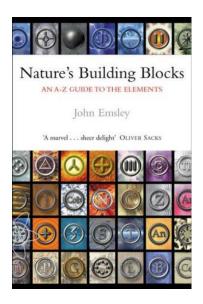
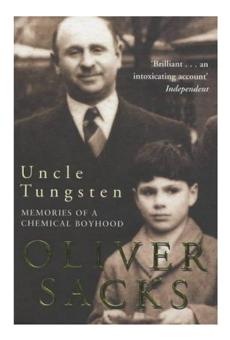

Kay Severin

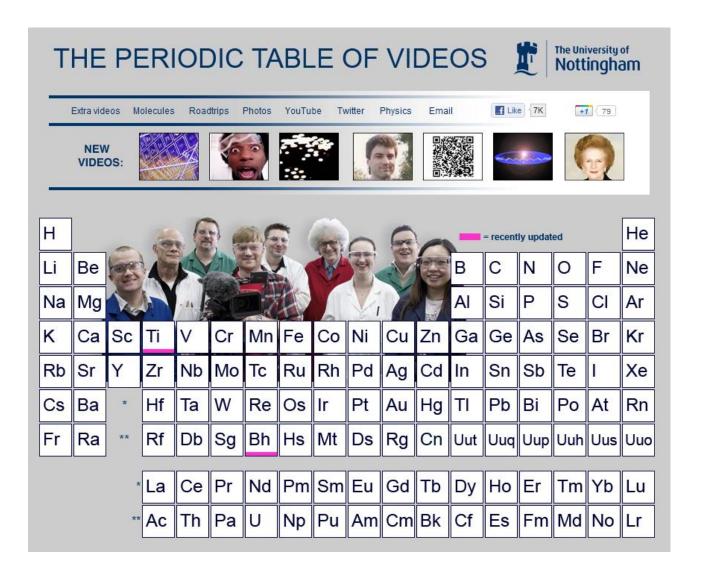
Table des Matières

- Introduction
- Structures
- L'hydrogène
- Les métaux alcalins
- Les métaux alcalino-terreux
- Groupe 13 éléments
- Groupe 14 éléments
- Groupe 15 éléments
- Groupe 16 éléments
- Les halogènes
- Les gaz nobles

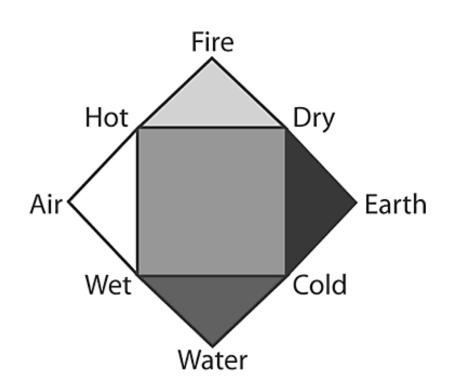
Littérature


« Nature's Building Blocks »

John Emsley


Commentaire : présente les aspects historiques et économiques des éléments de façon très intéressante.

Uncle Tungsten – Memoires of a Chemical Boyhood »
 Oliver Sacks

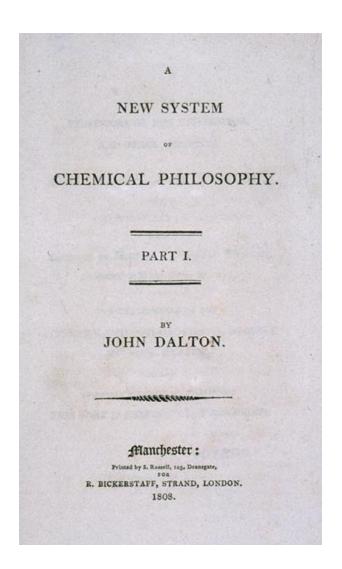

Commentaire : autobiographie avec beaucoup d'anecdotes et d'histoire chimiques.

Sites Internet

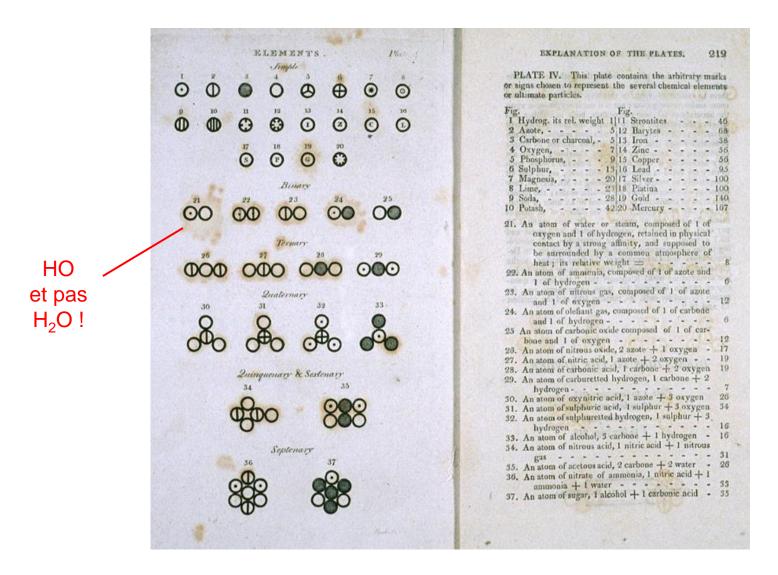
Les Quatre Éléments

Toute chose matérielle est composée de ces quatre éléments mélangés dans certaines proportions. Ils n'étaient pas considérés comme des éléments dans le sens moderne du terme : l' "eau" comprend aussi toute autre substance liquide, la "terre" n'importe quel matériau solide, et l' "air" n'importe quel gaz. À ces quatre substances primordiales sont associées quatre qualités primaires : la chaleur, le froid, l'humidité, et la sécheresse.

En 1624, le chimiste français Étienne de Clave fut arrêté pour avoir remis ce modèle en question!


Empédocles (284 – 322 AC) (284 – 322 AC)

La Théorie Atomique


- En 1808, Dalton présenta sa théorie atomique dans son livre « A New System of Chemical Philosophy ».
- Il supposa l'existence d'atomes (du grècque atomos) possédant une certaine masse, toujours identiques pour un même élément.

John Dalton (1766 – 1844)

Les Symboles Atomiques de Dalton

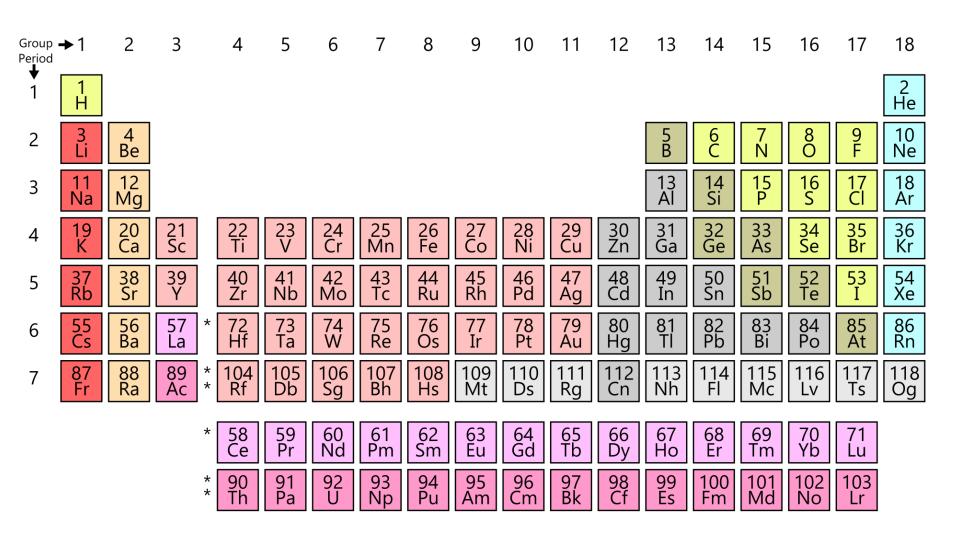
Les symboles de Dalton pour les atomes de divers éléments et leurs composés

Le Tableau Périodique – Mendeleev

- Chimiste russe qui travailla à St.-Pétersbourg.
- Classa les 63 éléments connus dans un tableau périodique basé sur la masse atomique, qu'il publia en 1869.
- Des tentatives similaires furent présentées par d'autres scientifiques à la même époque.
- Mendeleev prédit l'existence et les propriétés d'éléments encore inconnus et mit en évidence des masses atomiques erronées.
- Son tableau ne comprenait aucun des gaz nobles, qui n'avaient pas encore été découverts.

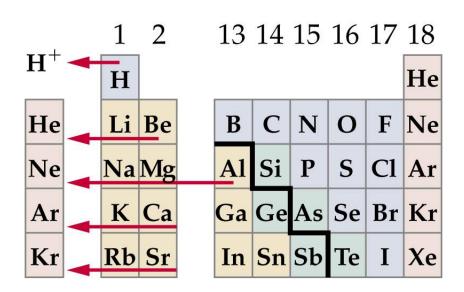
Dimitri Ivanovitch Mendeleev (1834-1907)

Le Tableau Périodique – Mendeleev

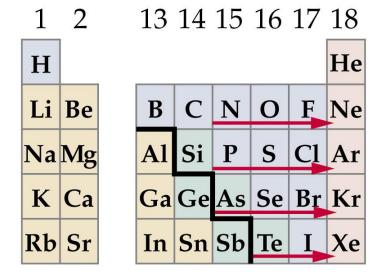

		2008	1000 00	Tabe	lle II.	260	200 200 200 200	
Reihen	Gruppe I.	Gruppe II.	Gruppe III.	Gruppe 1V. RE¹ RO²	Gruppe V. RR ² R ² O ⁵	Gruppe VI. RB ² RO ³	Gruppe VII. RB R'O'	Gruppe VIII.
1	H=1					354N		
2	Li = 7	Be = 9,4	B=11	C=12	N=14	0=16	F=19	į.
3	Na = 23	Mg = 24	Al=27,3	8i = 28	P = 31	8=32	Cl = 35,5	Ĺ
4	:K = 39	Ca = 40	—= 44	′Γi == 48	V=51	Cr=52	Mn== 55	Fe = 56, $Co = 59$, $Ni = 59$, $Cu = 63$.
5	(Cu=63)	$Z_{n} = 65$	-=68	— = 72	As = 75	Se = 78	Br == 80	
6	Rb == 85	Sr == 87	?Yt=88	Zr == 90	Nb == 94	Mo=96	-=100	Ru = 104, $Rh = 104$, $Pd = 106$, $Ag = 108$
7	(Ag = 108)	Cd = 112	In = 113	8n = 118	8b == 122	Te = 125	J = 127	
8	Ce = 133	Ba == 137	7Di == 138	?Co == 140	. 	! —	10 <u></u>	1 -1 1 1 1 1 1
9	(-)	· _	-	1-	8-49	<u> ===</u>	<u> </u>	
10	_		?Er == 178	7La == 180	Ta == 182	W = 184		0s = 195, $Ir = 197$, $It = 198$, $Au = 199$.
11	(Au = 199)	Hg = 200	TI = 204	Pb = 207	Bi = 208	_	-	
12		i 🗀 s		Th == 231	}	U = 240	_	l

H				N	Ier	ıde	ele	ev'	s F	er	ioc	dic	T	ab	le i	in	M	od	ler	n I	701	m								13	L
Li.	Be							(Trial) - 1																		В	C	N	0	F	Γ
Na	Mg														23										- 55	Al	Si	P	S	CI	Г
K	Ca																Ti	v	Cr	Mn	Fe	Co	Ni	Cu	Zn			As	Se	Br	Γ
Rb	Sr	100														?Yt	Zr	Nb	Mo		Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	J	Γ
Cs	Ba	?Di	Ce		8 0	8-						E		90	٦٢		-	Ta	W		Os	Ir	Pt	Au	Hg	TI	Pb	Bi		3 S	Γ
- 33			Th	- 11	9 0	2				1				S. S.	76	- 1				-	9	8-18	(i – E	- 1					2 3	2 - 3	г

1869 Symbol		modern Symbol
Yt	becomes	Y
J	becomes	I
Di	mixture of Pr, N	d, Pm, Sm, Eu & Gd
La	incorrect mass, 1	139 not 180


Mendeleeve's Predictions	Element
Eka-aluminium	Gallium
Eka-boron	Scandium
Eka-silicon	Germanium
Eka-manganese	Technetium
Tri-manganese	Rhenium
Dvi-tellurium	Polonium
Dvi-caesium	Francium
Eka-tantalum	Protactinium

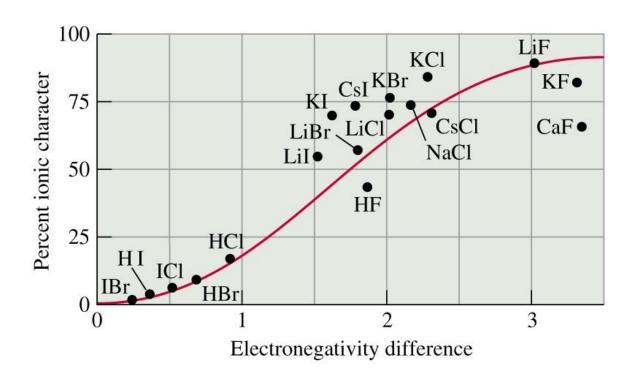
Le Tableau Périodique – Aujourd'hui



Les éléments sont classés par nombre atomique croissant et non par masse croissante.

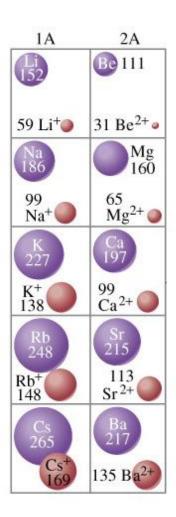
Métaux et Non-métaux

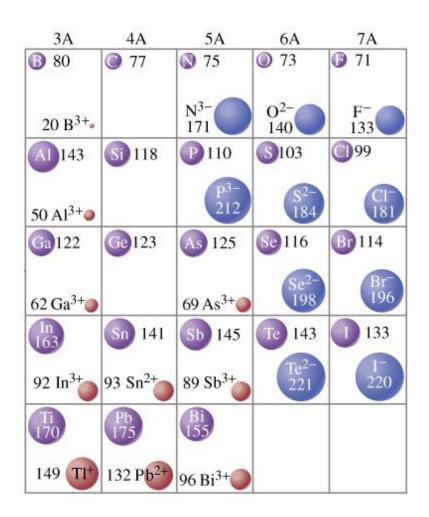
Les métaux ont tendance à perdre des électrons afin d'obtenir la configuration électronique d'un gaz noble.

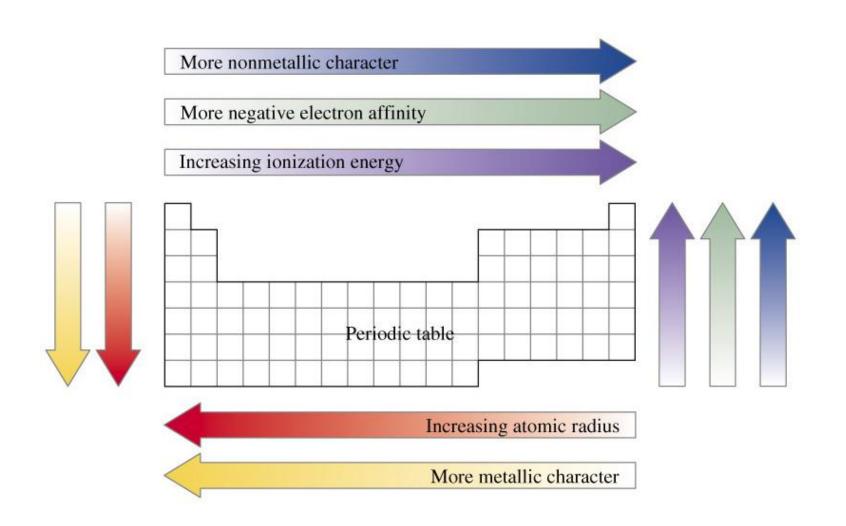

Les non-métaux ont tendance à gagner des électrons afin d'obtenir la configuration électronique d'un gaz noble.

L'Échelle d'Électronégativité selon Pauling

1	ì															
H 2.1	2		be	elow 1	.0		2.	0-2.4				13	14	15	16	17
Li 1.0	Be 1.5			0-1.4 5-1.9				5-2.9 0-4.0				B 2.0	C 2.5	N 3.0	O 3.5	F 4.0
Na 0.9	Mg 1.2	3	4	5	6	7	8	9	10	11	12	A1 1.5	Si 1.8	P 2.1	S 2.5	C1 3.0
K 0.8	Ca 1.0	Sc 1.3	Ti 1.5	V 1.6	Cr 1.6	Mn 1.5	Fe 1.8	Co 1.8	Ni 1.8	Cu 1.9	Zn 1.6	Ga 1.6	Ge 1.8	As 2.0	Se 2.4	Br 2.8
Rb 0.8	Sr 1.0	Y 1.2	Zr 1.4	Nb 1.6	Mo 1.8	Tc 1.9	Ru 2.2	Rh 2.2	Pd 2.2	Ag 1.9	Cd 1.7	In 1.7	Sn 1.8	Sb 1.9	Te 2.1	I 2.5
Cs 0.8	Ba 0.9	La* 1.1	Hf 1.3	Ta 1.5	W 2.4	Re 1.9	Os 2.2	Ir 2.2	Pt 2.2	Au 2.4	Hg 1.9	Tl 1.8	Pb 1.8	Bi 1.9	Po 2.0	At 2.2
Fr 0.7	Ra 0.9	Ac [†] 1.1			des: 1 s: 1.3-	.1–1.3 -1.5										


Électronégativité des éléments. D'une manière générale, l'électronégativité diminue du haut vers le bas d'un groupe et augmente de la gauche vers la droite d'une période d'éléments. Les valeurs proviennent de '*The Nature of the Chemical Bond*' de L. Pauling. Elles peuvent quelque peu différer d'autres valeurs basées sur des échelles différentes.


Liaison Ionique contre Liaison Covalente


Pourcentage du caractère ionique d'une liaison chimique en fonction de la différence d'électronégativité

Quelques Rayons Atomiques et Ioniques Représentatifs

Résumé des Tendances dans le Tableau Périodique

